
Introduction

The emf of metal thermocouples is approximated with

polynomials

emf
i
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where t is the temperature in °C of the working junc-

tion, with the reference junction at 0°C. The degree of

the polynomial is large enough. For the temperature

interval of –270 to 0°C, n is 13 for thermocouple E,

10 for K, 8 for N and 14 for T. Notation emf(t1,t2) is

used throughout the work to avoid the confusion be-

tween a voltage at a junction (denoted below �U) and

the difference in voltage between two junctions (de-

noted in literature �U).

There are two reasons why the approximating

polynomial is of high order. First, the function has

several maximums and minimums. This is not the

case for thermocouples. Figure 1 shows that the emf

of thermocouple T is smooth, monotonic function,

without extremums. Second, the function approxi-

mated is of the high order itself. For example, theory

predicts that the electrical resistivity of metals at low

temperature increases as the fifth power of tempera-

ture: �~T
5

[1]. It is evident that the polynomial must

be of the fifth order at least. But, again, this is not the

case for the emf of thermocouples. Figure 2 shows

ln(emf) vs. lnT for the data in Fig. 1, but with

emf(T,0 K) and T instead of emf(t,0°C) and t, respec-

tively. Points fit well to linear function

ln(emf)=1.775lnT– 8.087, indicating that the emf in-

creases with temperature even slowly than T
2
.

Thus, we face a paradox. The emf is a smooth

monotonic low-order function of temperature, but is

fitted to the high-order polynomial in temperature.

Recently the emf of a thermocouple was shown

to obey expression
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where �0 is the limiting theoretical value of the ther-

mocouple sensitivity, and �V is the characteristic

temperature of a particular thermocouple, depending

on the metals in the thermocouple [2]. The emf gener-

ated by a thermocouple with the junctions at tempera-
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Fig. 1 The emf for thermocouple T vs. temperature
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tures T1 and T2 is the difference between two voltages

at these temperatures:

emf ( , ) ( ) ( )T T U T U T
1 2 1 2

� �� � (3)

Formula (2) turned out to be useful not only for

metal thermocouples, but also for semiconductor ones

used in new ultra-fast DSCs [3]. No conventional

(and approved by metrological service) function

emf(T1,T2) for this type of a heat flux detector exists,

like the functions for the letter-designed metal

thermocouples. Fortunately, formula (2) with two

variable coefficients, �0 and �, fits the emf of a semi-

conductor thermocouple over the temperature range

–170–160°C with an error less than 0.5°C [4].

The objective of this work is to show that the

fundamental mathematical reasons make the tempera-

ture polynomials improper for the fitting of the emf

and to justify the necessity to develop another way for

the approximation of the emf data.

Mathematics of the emf fitting to a power

series

Any analytical function F(x) can be fitted to a polyno-

mial in x by using the Taylor series

F x F
F

i

x R x( ) ( )
( )

!
( )� � �

�
0

0
i

i n

i = 1

n

(4)

where F(0) is the value of the function at point x=0,

F
i
(0) is the value of the i

th
derivative with respect to x

at point x=0, and R(x
n
) is the residue of the series,

tending to zero when n tends to infinity. Taking

�U(T) in Eq. (2) as F(x), we have the derivatives
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First derivative, F
I
(0), is equal to zero, but the

rest derivatives are not. General equation for the i
th

derivative with i>1 is
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It is very important for further discussion that the

differentiation produces factorial (i–1)! in the numer-

ator while the term for i
th

derivative in Eq. (4) con-

tains factorial i! in the denominator. This case is not

typical in the Taylor expansion, it occurs only for the

negative power, x
–n

. Differentiation of most functions

does not produce factorial in the numerator, and the

factorial in the denominator decreases the terms in

sum (4) rapidly. Here we have the ratio of two factori-

als, and, reducing the fraction, we receive

emf
i

i

i = 2

n

( , ) ( ) ( )T T

i

T
U T

1 2

0 1

2
1� �

	




�

�




� �
�

� �

�

� (6)

where �U(T2) is a constant. Thus, the emf is expanded

to the series, equivalent to the polynomial

emf
i

i
( , )T T a a T a T a T a T

1 2 0 2 1

2

3 1

3

4 1

4

1
� � � � � �� (7)

with the recurrence formula for coefficients

a a
i

i
i i –1

–1
��

–1
� (8)

The terms of the expansion decrease due to the

division of each subsequent coefficient by character-

istic temperature �V. Such a series is similar to the

geometric series with a factor of T/�. Besides, the se-

ries is alternating, i.e. two neighbor terms differ in

sign. For T/�<1, the terms decrease with order i, and

the series (infinite polynomial with i��) converges.

The less the ratio T/�, the faster the convergence.

But, for T/�>1, the terms increase with i, and the se-

ries diverges. The residue of the series (R(x
n
) in

Eq. (4)) does not tend to zero. The increase in the

number of terms in the polynomials of this kind does

not improve the fitting. This fact is known in the ap-

proximation theory as the Runge’s phenomenon [5].

Practice of the emf fitting to a power series

The emf data of most important and carefully investi-

gated thermocouples are available in the WWW

(http://srdata.nist.gov/its90/main). Other national

metrological surveys use the same tables [6]. Values of

�V for letter-designated thermocouples are listed in Ta-

ble 1. They were derived from the fitting of the emf to

Eq. (2). We will show below that the coefficients and

terms in the NIST polynomials do agree with the mathe-

matical results described in the previous section.
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Fig. 2 Logarithm plot of the data in Fig. 1 with substitutions

t�T and emf(t,0°C)�emf(T,0 K)



One should emphasize that the development of

the polynomial is rather intricate problem. The whole

temperature interval of the emf is divided into two or

three parts with a separate polynomial for each part.

The polynomials must fit to one another at the points

bordering the intervals. The first and second deriva-

tives of the polynomials must be equal as well. It

means that the three first coefficients in two neighbor

polynomials are calculated after special procedure,

not following the conventional mathematical proce-

dure discussed in the previous section. Next deriva-

tives have a discontinuity at the border point, but their

coefficients depend on the previous coefficients. The

polynomials derived by metrological surveys of dif-

ferent countries from identical emf(t) tables may dif-

fer from one another. Below, we will compare the

Taylor expansion only with the NIST polynomials.

GOST polynomials are different [6], but the analysis

of their coefficients leads up to the same conclusions.

For type E thermocouple, polynomial coefficients

for –273<t<0°C are listed in Table 2. These are used for

the calculation of the emf at two temperatures, –25 and

–250°C. For –25°C, the terms of the polynomial de-

crease rapidly with i, and become negligible for i>8.

One can omit the last terms, one by one, and the accu-

racy of the fitting will become worse gradually. The in-

crease in the number of coefficients, i.e., the degree of

the polynomial, will not affect the result. This is a

‘good’ approximation. The result is completely different

for –250°C. The terms increase with i, becoming greater

than the final sum. The last term (516.4421) is fifty

times greater than the value of the whole polynomial

(–9.7185). The omission of the last term will corrupt the

result drastically. On the other hand, the increase in the

degree of polynomial (n+1) will add new significant

terms and change all previous coefficients. Such an ap-

proximation is ‘bad’.

This drastic difference between –25 and –250°C

is explained easily by the mathematics of the approxi-

mation. Terms in the Taylor expansion for the emf of

a thermocouple change with the term’s power as

(t/�V)
–i

. Characteristic temperature for E type thermo-

couple is 159 K (Table 1). For t=–25°C absolute value

of t/� is less than 1, and the series converges readily,

as a geometric series with the factor less than 1. For
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Table 1 Low-temperature intervals of the letter-designated

thermocouples (NIST polynomials) and �V values [2]

Type
metal(alloy) 1

metal(alloy) 2

T range of a

polynomial/°C

Polynomial

order, n

�/

K

E Chromel

Constantan

–270–0 13 159

J Fe

Constantan

–210–760 8 197

K Chromel

Alumel

–270–0 10 325

N Nicrosil

Nisil

–270–0 8 564

R 13%Rh/Pt

Pt

–50–1064 9 4097

S 10%Rh/Pt

Pt

–50–1064 8 4180

T Cu

Constantan

–270–0 14 340

Table 2 Calculation of the emf (in mV) for E type thermocouple

i Coefficients –25 °C –250 °C

ai t
i

ait
i

t
i

ait
i

0 0 0 0 0 0

1 5.8665508708·10
–2

–25 –1.4666 –250 –14.6664

2 4.5410977124·10
–5

625 0.0284 62500 2.8382

3 –7.7998048686·10
–7

–15625 0.0122 –15625000 12.1872

4 –2.5800160843·10
–8

390625 –0.0101 3906250000 –100.7819

5 –5.9452583057·10
–10

–9765625 0.0058 –9.765625·10
11

580.5916

6 –9.3214058667·10
–12

244140625 –0.0023 2.441406·10
14

–2275.7339

7 –1.0287605534·10
–13

–6103515625 0.0006 –6.103516·10
16

6279.0561

8 –8.0370123621·10
–16

1.52588·10
11

–0.0001 1.525879·10
19

–12263.5076

9 –4.3979497391·10
–18

–3.81470·10
12

0.0000 –3.814697·10
21

16776.8468

10 –1.6414776355·10
–20

9.53674·10
13

0.0000 9.536743·10
23

–15654.3506

11 –3.9673619516·10
–23

–2.38419·10
15

0.0000 –2.384186·10
26

9458.9280

12 –5.5827328721·10
–26

5.96046·10
16

0.0000 5.960464·10
28

–3327.5681

13 –3.4657842013·10
–29

–1.49012·10
18

0.0000 –1.490116·10
31

516.4421

at
i

i

� =–1.4321 at
i

i

� =–9.7185



t=–250°C, the absolute value of t/� is greater than 1,

and the series diverges. The greater the power of a

term in the series, the greater the term itself.

In applying the results of the mathematical eval-

uations to the practical fitting, one can see that the

terms in the polynomials are alternative in sign, i.e.,

negative for even i and positive for odd. This is valid

for i>2, because three first coefficients ai (i=0, 1, 2)

are used for the fitting of two polynomials at the bor-

der between their temperature intervals. It is interest-

ing, that the term’s alteration in sign is obtained not

by the alteration in sign of a coefficient, but of the

powers of the variable. Temperature in °C is negative

itself, and its odd and even powers differ in sign.

And finally, it is interesting to check whether the

values of the polynomial coefficients do decrease

with the number as �

–i
. Logarithms are most suitable

way to analyze productions and geometric series. In

applying logarithm to Eq. (6) for the terms in the Tay-

lor series for the emf, we have

ln ln lna

i

i
i
� �

�
0
�

� (9)

Here, we omitted only term (–1)
i
. To proceed

both positive and negative coefficients, we calculate

0.5ln(ai)
2
. The results are shown in Fig. 3, fitted to lin-

ear regression

05 250 493
2

. ln( ) . .a i
i

� � (10)

Exponent of 4.93 is 138, very close to 159 of �V

for type E thermocouple. Similar evaluations for

thermocouples N (0.29–5.46i) and S (2.88–6.96i) are

also shown in Fig. 4. Thus, one can conclude that the

properties of the fitting polynomial for the emf of

thermocouples do agree with those derived from the

Taylor expansion of Eq. (2).

Approximation of high-temperature heat

capacity

Merits and demerits of the polynomial fitting for the

emf are seen better in the comparison with other ex-

amples. Fitting Debye function D(x) is the most rele-

vant topic. According to the Debye model, heat ca-

pacity as a function of temperature is

C R

x

y y x
�

�

�

�

�

�

�

�

�

��
3

12

1

3

1
3

3

0

d

e e
y x

x

(11)

where R is the gas constant, x=�D/T and �D is the

characteristic temperature of the vibrational spectrum

of a solid (Debye temperature). Formula in the brack-

ets, D(x), ranges from 0 (T=0, x=�) to 1 (T=�, x=0)

and cannot be expressed in an analytical equation. It

is calculated and tabulated instead. Nevertheless, for

practical use we have to approximate table D(x) and

then calculate the Debye function after the fitting

function (polynomial). In his original report, Debye

has considered himself the expansion of function D(x)

for high- and low-temperature limits [7]. Cubic func-

tion C=aT
3

for the low-temperature limit is the most

important and well-known result. It is used in

low-temperature calorimetric works for the extra-

polation of heat capacity to zero temperature and cal-

culation of thermodynamic functions [8].

The other result is less known. In considering the

high-temperature limit for his heat capacity model,

Debye expanded Eq. (11) to a series in x for x�0 [7]

and received

D x
x x x x x

( )� � � � � � �1
20 560 18144 633600 23063040

2 4 6 8 10

� (12)

Relation between this expansion and fitting poly-

nomial is tested in this work using D(x) over the interval

of 0�x�2.5, with D(x) decreasing from 1 down to

0.745853. Tabulated points with the increment of 0.01

(total 251) [9] were fitted to a temperature polynomial

of the 6
th

order using QuattroPro software with built-in
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Fig. 3 Polynomial coefficients in the low-temperature range

for thermocouples � – E, � – N and � – S, fitted to

their linear regressions

Table 3 Calculation of the Debye function at x=�D/T=2.5 af-

ter the fitting polynomial

i Coefficients, ai x
i

aix
i

0 1.0000012 1 1.0000012

1 –0.00002989 2.5 –0.0000747

2 –0.04983574 6.25 –0.3114734

3 –0.000363107 15.625 –0.0056736

4 0.002175987 39.0625 0.0849995

5 –0.000211513 97.65625 –0.0206555

6 –0.0000052082 244.1406 –0.0012715

ax
i

i

� = 0.7458520



fitting procedures. The coefficients for the polynomial

are listed in Table 3. In comparing ai of the fitting poly-

nomial with expansion (12), we see that three first coef-

ficients in the expansion (+1, –0.05 and +0.00179) agree

well with corresponding coefficients (i=0, 2 and 4) of

the polynomial (+1.00, –0.0498 and +0.00218). Their

contribution into the calculated value is very large,

about 90% of the change in D(x). Next coefficients of

the expansion (5.5·10
–5

, 1.6·10
–6

and 4.3·10
–8

for x
6
, x

8

and x
10

, respectively) do not affect the coefficients of the

polynomial.

Fitting function for the high-temperature heat ca-

pacity was a problem 75 years ago. At that time heat ca-

pacity was described by a polynomial of temperature

CP=a+bT+cT
2

(13)

This form of equation was not particularly satis-

factory for the purpose because a reasonable number

of terms cannot be made to fit the data with sufficient

accuracy. Meier and Kelley [10] suggested empirical

equation

CP=a+bT–cT
–2

(14)

which describes the experimental data better than

Eq. (13). The term with T
–2

improves the approxima-

tion significantly, and Eq. (14) is widespread in pres-

ent-day reports [11, 12]. More Debye’s terms in

high-temperature heat capacity are combined again

with a linear term [13]

C R

T T

aT
P
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4
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In comparing polynomials for the emf (Table 2)

and D(x) (Table 3), we see that the former i) contains

more coefficients (13 vs. 6), ii) with more digits (11 vs.

8), and iii) fits the table values with worse accuracy

(0.005 vs. 0.0005%). We wouldn’t discuss here in detail

the number of digits in the coefficients, because this

point is explained partly by subjective reasons. Suffice

to point out that three terms (8
th
, 9

th
and 10

th
) in the emf

polynomial at 250°C (Table 2) are reported with nine

digits. They are all necessary in order to calculate the

sum accurately, not decreasing its accuracy after round-

ing. It means that the corresponding coefficients (a8, a9

and a10) must also be with nine digits at least. In the D(x)

polynomial, the second term is printed with seven digits,

and coefficient a2 also must have seven digits.

Accuracy of the approximation is considered

here as the ratio of the deviation of polynomial values

from tabulated ones (d) to the amplitude of the func-

tion approximated (A). For the emf polynomial,

d=0.0005 mV and A=9.835 mV with d/A�5·10
–5

. For

the D(x) polynomial, d=0.0000012 and

A=1–0.745853=0.254147 with d/A �5·10
–6

.

Canonical example of Runge’s phenomenon

It has long been known that the increase in the order of a

polynomial sometimes does not improve the approxi-

mation of tabulated data. This phenomenon is usually

exemplified with conformal functions (a
2
+x

2
)
–1

[14],

(1+x
2
)
–1

[15, 16], (1+16x
2
)
–1

[17], (1+25x
2
)
–1

[18]. These

are discussed in lectures, monographs and practical

courses as ‘a special class of functions’. Unfortunately,

we did not find any relevant explanation of why is ex-

actly this function so outstanding, how many functions

do demonstrate the Runge’s phenomenon, and how

should we recognize a function of Runge’s phenomenon

type. The problem is considered very difficult because

‘a complete and rigorous development ... requires some

subtle analysis as well as evaluation of complex

integrals via the theory of residues ... beyond the com-

prehension of most students in undergraduate numerical

analysis courses’ [19].
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Table 4 Expansion to the Taylor series and the polynomial approximation over intervals [min,max] for the Runge function (1+x
2
)
–1

i

Taylor series

Approximation polynomials

[–0.5,+0.5] [–1,+1] [–5,+5] [–5,+5]

F
i
(0) F

i
(0)/i! ai ai ai ai·5

i

0 1 1 1.0000 0.9998 0.8499 0.850

1 0 0 –2·10
–17

–5·10
–17

–8·10
–16

0.000

2 –2 –1 –0.9998 –0.9880 –0.2870 –7.175

3 0 0 –9·10
–16

7·10
–16

4·10
–16

0.000

4 24 1 0.9936 0.8823 0.0367 22.949

5 0 0 1·10
–14

–2·10
–15

–4·10
–17

0.000

6 –720 –1 –0.9207 –0.5603 –0.0019 –29.683

7 0 0 –4·10
–14

1·10
–15

1·10
–18

0.000

8 40320 1 0.5736 0.1665 3·10
–5

13.203

at
i

i

� =0.143



Fortunately, undergraduate students compre-

hend the functional analysis (differentiation), polyno-

mials, and the Taylor series. Polynomials for the emf

demonstrate the Runge’s phenomenon because of the

negative power of the variable in the initial function

(in fact, logarithm, but transforming into the negative

power after the differentiation). Now we can check

whether this reason is also valid for the canonical

function demonstrating the Runge’s phenomenon.

First, the derivatives (F
i
(x)) of function (1+x

2
)

–1

up to the 8
th

order were calculated. Then the coeffi-

cients (F
i
(0)/i!) in the Taylor series (Eq. (4)) were cal-

culated. Coefficients for the approximation polyno-

mial were calculated using software QuattroPro for

the intervals –5<x<+5, –1<x<+1 and –0.5<x<+0.5.

The results are shown in Table 4. Again, like it was in

the emf and D(x) fitting, the coefficients of the Taylor

series and approximation polynomial agree with one

another in the number of significant coefficients (i=2,

4, 6 and 8) and their sign. The coefficients of the ap-

proximation depend extremely on the number of node

points and the approximation interval. The greater the

interval, the greater the error of the approximation.

The standard deviation between the function and its

approximation polynomial is <0.000001 for

–0.5<x<+0.5, 0.00016 for –1<x<+1 and 0.059 for

–5<x<+5. It is because the coefficients of the Taylor

expansion in Table 4 do not decrease with increasing

their number, and terms aix
i
increase with i for large x

values, like it was for the emf fitting. One may con-

clude that the Runge’s phenomenon is typical of the

functions with a negative power of a variable (x
–n

).

Conclusions

Mathematical analysis of the equation for the emf of a

thermocouple revealed that the expansion to the Tay-

lor series of temperature produces an alternating poly-

nomial with coefficients ai decreasing inversely with

�
V

i
, where �V is the thermoelectric characteristic

temperature of the couple of metals and i is the num-

ber of the coefficient.

NIST polynomials for the emf of letter-designated

thermocouples do conform the mathematical results.

Comparison between the emf polynomial and

that for the approximation of the Debye function

shows evidently that the emf polynomial is much

worse if T/�V>1. The emf polynomial reproduces the

divergent series, with the terms increasing with i.

Such a problem is known in the approximation the-

ory as Runge’s phenomenon. It is typical of the function

with negative powers of a variable. Differentiation of

such a function produces the factorial, which increases

drastically the terms in the Taylor expansion, making

the series diverge. There are several strategies, each em-

ploying a single polynomial over the entire interval, to

wholly or partially defeat Runge’s phenomenon. Unfor-

tunately, each of them has liabilities including various

permutations of inefficiency, ill-conditioning and a lack

of theory [20].

We will show in the next report how to evade this

problem and approximate the emf accurately with poly-

nomials having 3–4 coefficients instead of 10–14.
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